FINITE GENERATION OF TORIC FGA ALGEBRAS

FLORIN AMBRO

FGA algebras were recently introduced by Shokurov [4], who showed
that their finite generation in dimension d implies the existence of flips
in dimension d 4+ 1. Shokurov showed that FGA algebras are finitely
generated in dimension 1 and 2, and he conjectured this to be true in
any dimension. We answer this conjecture in the affirmative, in the
toric case [1].

FGA algebras. Let (X/S, B) be the data consisting of a proper sur-
jective morphism 7: X — S of complex algebraic varieties, and a
log variety (X, B) with Kawamata log terminal singularities such that
—(K + B) is nef and big relative to 7.

The simplest example of an FGA algebra is the graded Og-algebra

Rxss(D) = @ m.0x(iD),
=0

for a Cartier divisor D on X. The finite generation of Rx/s(D) is a
consequence of the Log Minimal Model Program in dimension dim(X).

In general, an FGA algebra is a graded subalgebra £ C Rx(D)
satisfying an extra property called asymptotic saturation. To explain
this, we need some preparation. The normalization of £ is also a graded
subalgebra of Rx/s(D), and it has a presentation

Z = é Wi*OXi(Mi)a
=0

where p;: X; — X is a birational modification, m; = 7w o u; and M; is
a m;-free divisor on X;. We may replace the X;’s by higher birational
models, so that X; is nonsingular and contains a simple normal cross-
ings divisor which supports both Kx, — pf(K + B) and M;. Then L is
called asymptotically saturated if

71 Ox, ([Kx, = 1 (K + B) + 2Mi1) € 73, 0x, (M), Vi, j > 1.

Asymptotic saturation involves apriori infinitely many birational mod-
els of X. If dim(X) < 2, its particular case i = j bounds the singular-

ities on X of the (non-complete) linear systems |£;| C |iD|, and this
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in turn can be used to restate asymptotic saturation in terms of just
one birational model of X. Finite generation follows then by a stan-
dard argument. It is an interesting open question whether a similar
approach works for dim(X) > 3.

In the toric case, we do not know if the above approach works. In-
stead, we can interpret toric asymptotic saturation only in terms of the
limit lim;_, o %Mi, which can be regarded as (the support function of)
a convex set [J. The finite generation of toric FGA algebras becomes
then a criterion for [ to be rational and polyhedral.

Convex sets. Let N be a lattice, with dual lattice M, let Ng and Mg
be the scalars extensions, with induced pairing (-,-): Mg x Ng — R.
For a function h: Ng — R, define

On = {m € Mg; (m,e) > h(e),Ve € Ng}

Op= {m € Mg; (m,e) > h(e),Ve € Ng \ 0}.
For a non-empty compact convex set [1 C Mg, its support function is

ho: Nr — R, hg(e) = mig(m, e).
me

The set of non-empty compact convex subsets of Mg is in bijection
with the set of functions h: Ng — R satisfying

(i) positively homogeneous: h(Ae) = Ah(e) for A > 0,e € Ng.

(i) upper convex: h(ey + ea) > h(ey) + h(ez) for ey, e5 € Ng.
The correspondence is given by [ — hg and h — [,.

Definition 1. A log discrepancy function is a positively homogeneous,
continuous function ¢: Ng — R such that ¢ (e) > 0 for e # 0, and
{e € Ng;¢(e) < 1} is a compact set.

Toric FGA algebras. For simplicity, we assume that S is a point.
Thus X = Ty emb(A) is a proper torus embedding, B = - ) bV (€)
is an invariant Q-divisor and K+ B is Q-Cartier. This means that there
exists a function ¢: Ng — R such that ¢(e) = 1—b, for every e € A(1),
and ¢ is A-linear. Since (X, B) has Kawamata log terminal singular-
ities, 1 is a log discrepancy function. The terminology is inspired by
the following property: a primitive lattice point e € N defines a toric
valuation v, of X, and the log discrepancy of (X, B) at v, is exactly
¥ (e). Also, note that —(K + B) is nef if and only if — is upper convex.
Any invariant normal algebra is of the form

L= P &

1=0 meMnl];
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where ([0;);>0 is a sequence of lattice convex polytopes in Mg satisfying
the following properties:

- Oy ={0}.

- Dz+|:|] CDH_]' fori,5 > 1.

- O:=Uix 10; is a bounded convex set.
The algebra is finitely generated if and only if [J; = UJ for some i. For
an example of such a sequence, fix a compact convex set [1 C Mg, and
let OJ; be the convex hull of M N4O.

Since limits of upper convex functions converge uniformly on com-

pact sets, the asymptotic saturation of £ with respect to (X, B) is
equivalent to the following Diophantine property

MnN ﬁjhﬂpc U, vy > 1.

Then L is finitely generated if and only if [ is a rational polytope, i.e.
the convex hull of finitely many rational points, and this follows from
the following result:

Theorem 2. Let ¢ be a log discrepancy function and let [0 C Mg be
a non-empty compact convex set with support function h. Assume that
the following properties hold:

(i) Mn ﬁjh,wc 0 for every j > 1.
(ii) 7h — 4 is upper convez, for some r > 0.
Then U is a rational polytope.

Theorem 2 is proved by induction on dimension. Consider the unit
sphere S(NNg) with respect to some norm on Ng. Using Diophantine
Approximation [2|, we show that every point e € S(Ng) is contained
in the relative interior of a rational polyhedral cone o, on which hp
is rational and linear with respect to some fan with support o.. If
dim(o,) = dim(XV) for every e, one can use the compactness of S(Ng)
to finish the proof. Otherwise, we increment the dimension of ., using
restriction to an appropriate face of [J and induction on dimension.
The key idea behind the induction step is to bound the pairs ([J, )
appearing in Theorem 2, assuming that [J is a rational polytope. The
general case is a combination of the following two examples:

1) If O is a rational polytope of maximal dimension, property (i) is
equivalent to

Ap(1) C {e € Ng;w(e) < 1},
Here A is the ample fan in N associated to [, defined by

Ty emb(Ap) = Proj( @ P ™),

=0 meMni
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and Ap(1) is the set of primitive lattice vectors on the one dimensional
cones of A. It follows that Ag belongs to a finite family of fans, by the
compactness of the level sets of 1.

2) If O = {0}, property (i) is equivalent to

Mn O_y= {0}

By (ii) and Kannan-Lovész’s effective bound [3] of the width of a convex
set in terms of the number of lattice points it contains, there exists
e € N\ 0 such that ¥(e) + ¢(—e) < C, where C'is a positive constant
depending on the dimension of the lattice N only.

Finally, we remark that property (ii) is an “adjoint type” general-
ization of the weak Fano property of (X, B) in the definition of FGA
algebras. It is not clear if it has a non-toric analogue. If dim(N) = 2,
property (i) alone implies that [ is a rational polytope. If dim(N) > 3,
property (ii) is used in the inductive step of the proof.
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