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FGA algebras were recently introduced by Shokurov [4], who showed
that their finite generation in dimension d implies the existence of flips
in dimension d + 1. Shokurov showed that FGA algebras are finitely
generated in dimension 1 and 2, and he conjectured this to be true in
any dimension. We answer this conjecture in the affirmative, in the
toric case [1].

FGA algebras. Let (X/S, B) be the data consisting of a proper sur-
jective morphism π : X → S of complex algebraic varieties, and a
log variety (X, B) with Kawamata log terminal singularities such that
−(K + B) is nef and big relative to π.

The simplest example of an FGA algebra is the graded OS-algebra

RX/S(D) =

∞⊕

i=0

π∗OX(iD),

for a Cartier divisor D on X. The finite generation of RX/S(D) is a
consequence of the Log Minimal Model Program in dimension dim(X).

In general, an FGA algebra is a graded subalgebra L ⊆ RX(D)
satisfying an extra property called asymptotic saturation. To explain
this, we need some preparation. The normalization of L is also a graded
subalgebra of RX/S(D), and it has a presentation

L̄ =
∞⊕

i=0

πi∗OXi
(Mi),

where µi : Xi → X is a birational modification, πi = π ◦ µi and Mi is
a πi-free divisor on Xi. We may replace the Xi’s by higher birational
models, so that Xi is nonsingular and contains a simple normal cross-
ings divisor which supports both KXi

− µ∗
i (K + B) and Mi. Then L is

called asymptotically saturated if

πi∗OXi
(�KXi

− µ∗
i (K + B) +

j

i
Mi�) ⊆ πj∗OXj

(Mj), ∀i, j ≥ 1.

Asymptotic saturation involves apriori infinitely many birational mod-
els of X. If dim(X) ≤ 2, its particular case i = j bounds the singular-
ities on X of the (non-complete) linear systems |Li| ⊂ |iD|, and this
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in turn can be used to restate asymptotic saturation in terms of just
one birational model of X. Finite generation follows then by a stan-
dard argument. It is an interesting open question whether a similar
approach works for dim(X) ≥ 3.

In the toric case, we do not know if the above approach works. In-
stead, we can interpret toric asymptotic saturation only in terms of the
limit limi→∞ 1

i
Mi, which can be regarded as (the support function of)

a convex set �. The finite generation of toric FGA algebras becomes
then a criterion for � to be rational and polyhedral.

Convex sets. Let N be a lattice, with dual lattice M , let NR and MR

be the scalars extensions, with induced pairing 〈·, ·〉 : MR × NR → R.
For a function h : NR → R, define

�h = {m ∈ MR; 〈m, e〉 ≥ h(e), ∀e ∈ NR}
◦
�h= {m ∈ MR; 〈m, e〉 > h(e), ∀e ∈ NR \ 0}.

For a non-empty compact convex set � ⊂ MR, its support function is

h� : NR → R, h�(e) = min
m∈�

〈m, e〉.
The set of non-empty compact convex subsets of MR is in bijection
with the set of functions h : NR → R satisfying

(i) positively homogeneous: h(λe) = λh(e) for λ ≥ 0, e ∈ NR.
(ii) upper convex: h(e1 + e2) ≥ h(e1) + h(e2) for e1, e2 ∈ NR.

The correspondence is given by � 
→ h� and h 
→ �h.

Definition 1. A log discrepancy function is a positively homogeneous,
continuous function ψ : NR → R such that ψ(e) > 0 for e �= 0, and
{e ∈ NR; ψ(e) ≤ 1} is a compact set.

Toric FGA algebras. For simplicity, we assume that S is a point.
Thus X = TN emb(∆) is a proper torus embedding, B =

∑
e∈∆(1) beV (e)

is an invariant Q-divisor and K+B is Q-Cartier. This means that there
exists a function ψ : NR → R such that ψ(e) = 1−be for every e ∈ ∆(1),
and ψ is ∆-linear. Since (X, B) has Kawamata log terminal singular-
ities, ψ is a log discrepancy function. The terminology is inspired by
the following property: a primitive lattice point e ∈ N defines a toric
valuation ve of X, and the log discrepancy of (X, B) at ve is exactly
ψ(e). Also, note that −(K+B) is nef if and only if −ψ is upper convex.

Any invariant normal algebra is of the form

L =

∞⊕

i=0

(
⊕

m∈M∩�i

Cχm)
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where (�i)i≥0 is a sequence of lattice convex polytopes in MR satisfying
the following properties:

- �0 = {0}.
- �i + �j ⊂ �i+j for i, j ≥ 1.
- � :=

⋃
i≥1

1
i
�i is a bounded convex set.

The algebra is finitely generated if and only if �i = � for some i. For
an example of such a sequence, fix a compact convex set � ⊂ MR, and
let �i be the convex hull of M ∩ i�.

Since limits of upper convex functions converge uniformly on com-
pact sets, the asymptotic saturation of L with respect to (X, B) is
equivalent to the following Diophantine property

M∩ ◦
�jh−ψ⊂ �j , ∀j ≥ 1.

Then L is finitely generated if and only if � is a rational polytope, i.e.
the convex hull of finitely many rational points, and this follows from
the following result:

Theorem 2. Let ψ be a log discrepancy function and let � ⊂ MR be
a non-empty compact convex set with support function h. Assume that
the following properties hold:

(i) M∩ ◦
�jh−ψ⊂ j� for every j ≥ 1.

(ii) rh − ψ is upper convex, for some r > 0.

Then � is a rational polytope.

Theorem 2 is proved by induction on dimension. Consider the unit
sphere S(NR) with respect to some norm on NR. Using Diophantine
Approximation [2], we show that every point e ∈ S(NR) is contained
in the relative interior of a rational polyhedral cone σe on which h�
is rational and linear with respect to some fan with support σe. If
dim(σe) = dim(N) for every e, one can use the compactness of S(NR)
to finish the proof. Otherwise, we increment the dimension of σe, using
restriction to an appropriate face of � and induction on dimension.
The key idea behind the induction step is to bound the pairs (�, ψ)
appearing in Theorem 2, assuming that � is a rational polytope. The
general case is a combination of the following two examples:

1) If � is a rational polytope of maximal dimension, property (i) is
equivalent to

∆�(1) ⊆ {e ∈ NR; ψ(e) ≤ 1}.
Here ∆� is the ample fan in N associated to �, defined by

TN emb(∆�) = Proj(

∞⊕

i=0

⊕

m∈M∩i�
Cχm),
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and ∆�(1) is the set of primitive lattice vectors on the one dimensional
cones of ∆. It follows that ∆� belongs to a finite family of fans, by the
compactness of the level sets of ψ.

2) If � = {0}, property (i) is equivalent to

M∩ ◦
�−ψ= {0}.

By (ii) and Kannan-Lovász’s effective bound [3] of the width of a convex
set in terms of the number of lattice points it contains, there exists
e ∈ N \ 0 such that ψ(e) + ψ(−e) ≤ C, where C is a positive constant
depending on the dimension of the lattice N only.

Finally, we remark that property (ii) is an “adjoint type” general-
ization of the weak Fano property of (X, B) in the definition of FGA
algebras. It is not clear if it has a non-toric analogue. If dim(N) = 2,
property (i) alone implies that � is a rational polytope. If dim(N) ≥ 3,
property (ii) is used in the inductive step of the proof.
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